

Biodiversity of Jashpur District Chhattisgarh, India

Ignace Kindo

Abstract: The biodiversity of Jashpur district of Chhattisgarh was studied using the methods of Frequency, density and abundance. For sampling Loro Ghat was taken. In the present study, at about 77 deciduous forest trees species belonging to 31 different families, were identified with their botanical name and their possible uses by the local tribes were recorded. It is observed that the family Fabaceae represent maximum number of seventeen species, followed by Moraceae with 7 species, Combretaceae with 06 species, Myrtaceae with 5 species Rutaceae with 4 species, Anacardiaceae Rubiaceae and Euphorbiaceae with 3 species, respectively. Besides, these families Annonaceae, Apocynaceae, Burseraceae, Embenaceae, Lamiaceae and Meliaceae were found with two species of each in the surveyed area. On the basis of data analysis Butea monosperma showed their maximum frequency, density and abundance i.e., 0.507, 1.074 and 2.117 respectively, during the sampling, and then followed by Cassia fistula and Shorea robusta with 0.313 and 0.388, respectively. On the other hand, Embilica officinalis, Ficus bengalensis, F. carica, F. glomerata, Pongamia pinnata and Pterocarpus marsupium showed minimum distribution in the forest. Surprisingly, the species like Santalum album, Mangifera indica and Annona reticulate, Terminalia arjuna and Tectona grandis were appeared with high abundance.

Key Words: Biodiversity, Forest tree, Frequency, density and abundance.

I. INTRODUCTION

The forest is a natural living home for varieties of life forms including flora such as trees, shrubs, herbs, lions, and creepers so also in Fauna such as animals, birds, reptiles, butterfly and other microorganism which compose megadiversity. India is considered to be as one of the 12th megabio-diversity of the world because of the climatic composition. The climate has a great impact on the phytogeogarphy of Jashpur district. The phytogeography of Jashpur district various. It can be classified into four different climatic zone i.Jashpur: it includes samri, padrapat, sunna and kushmi. It is very cold in winter and vegetations thrive suited for it. The vegetation found here are scarcely found elsewhere in the district. ii. Kunkuri: Kunkuri includes Loro doffa, Duldula, and Bandarchua is the hottest in summer and generally cool in winter season. The vegetation of the kunkuri area also varies due to its climatic zone. iii. Pharsabahar: Pharsabahar includes Tapkara, pandripani, and Bagbahar.

Manuscript received on 12 March 2023 | Revised Manuscript received on 28 March 2023 | Manuscript Accepted on 15 April 2023 | Manuscript published on 30 November 2023. * Correspondence Author (s)

Ignace Kindo*, Department of Botany, Loyola College Kunkuri, Dt. Jashpur, Chhattisgarh, India. E-mail: kindoignace37@gmail.com, ORCID ID: 0009-0008-4984-7276

© The Authors. Published by Lattice Science Publication (LSP). This is an access article under the CC-BY-NC-ND license open (http://creativecommons.org/licenses/by-nc-nd/4.0/)

The vegetation of the pharsabahar varies, due to its climatic zone. the vegetation of the region varies. The pharsabahar is also well known for snakes because the climate is very suitable for snakes. iv and Pathalgaon. Pathalgoan includes, Kansabel, Lureg and part of sitapur. Pathalgaon is pleasant cool in winter. The vegetation also varies here. Pathalgoan is very famous for tomatoes due to its climatic zone. Thus each four region of the district is very peculiar in its own way especially in the area of climate and the biodiversity. The literature is a witness to the biodiversity of the region. There has always been a relationship between man and natural resources for various need, be it medicine, flowers, fruits, oil, timber and food. The fish Stupefying plants used by Tribals of Jashpur District (Amia Tirkey 2006 [1]). The medicinal use of local inhabitance of Jashpur district was reported (Amia Ekka 2011[2]) and the use of alcoholic bevarages was studied (Amia Ekka 2012 [3][14][15]). Traditional plants used for snakebite by Oraon tribe of Jashpur district (Amia Ekka and Neelam Sanjeev 2013 [4]). The medicinal and aromatic plants of botanical garden Loyola college kunkuri was studied by (Ignace kindo 2022) [6][11][12][13]).

II. STUDY SITE

Jashpur district lies within the north - eastern corner corner of the kingdom of Chhattisgarh in India adjacent the border of Jharkhand and odisha. Jashpur nagar is the executive headquarters of the district. it's far presently a part of the purple corridor. during the british raj Jashpur metropolis turned into the capital of Jashpur nation, one of the princely states of the jashpur states enterprise. Jashpur become a princely state before independence. The records of the region is quite vague. Local right here say evidences advise that there has been a dom dynasty ruling the region by means of the centre of 18th century. The last dom ruler raibhan was defeated and killed by means of the founding father of the existing Jashpur kingdom sujan rai. It is stated that banswada, a smaller nation in vintage rajputana province, changed into the local location of sujan rai's a castors. they hooked up their rule and kingdom in sonpur. sujan rai, being the eldest son of the survavanshi king, was on a searching excursion in deep forest, his father (king) died. in view of the culture and requirement of the occasion his more youthful brother changed into coronate, because the throne of king couldn't be saved unoccupied, even for some time. on go back from looking expedition, sujan rai became provided and asked to take over the charge of the throne. however he preferred to be a sangasi and took to the wooded area. Wandering approximately he reached khudia, the capital camp of the dom country. There he found that the subjects have been unhappy and upset with the dom raja raibhan and were at the verge of riot.

Published By: Lattice Science Publication (LSP) © Copyright: All rights reserved.

sujan rai led the famous rebellion, defeated the dom raja in a conflict. now, sujan rai have become the king and a new nation 'jashpur' became founded via him. ultra-modern Jashpur royal circle of relatives belongs to that dynasty.

III. GEOGRAPHY

The north-south length of this district is about 150 km, and its east-west breadth is about 85 km. Its total area is $6,205 \text{ km}^2$. It is between $22^\circ 17'$ and $23^\circ 15'$ North latitude and $83^\circ 30'$ and $84^\circ 24'$ East longitude. It is divided geographically into two parts. The northern hilly belt is called the Upper Ghat. The remaining, southern part, is called Nichghat.

IV. CLIMATE

kunkuri is the hottest region in nichghat during the summer and pandrapat is the coldest region in upper ghat in the winter. it is situated between forests. It is a junction, from Raigarh and from ambikapur or Jashpur all the people need to cross Pathalgaon first.

V. MATERIAL AND METHODS

In the present study, Phytosociological diversity analysis carried out by quadrate method as suggested by (Mishra 1968[7]); (Cintron and Novelli 1984[5]); (Snedaker and Snedaker 1984[10]). For this, Loro Ghat was selected as the study site, and 67 quadrate of $15 \text{ m} \times 20 \text{ m}$ size were laid out at the study sites. Each sites, further divided into five sub segments of 2 km along the road side of Jashpur and Kunkuri. On the basis of the data obtained from the quadrate sampler, the structure distribution of forest trees, were analysed. The parameters such as Frequency, Density and Abundance obtained during the study as suggested by (Phillips 1959 [9]) were calculated from the data, under as follows:

Frequency = <u>Number of les in which speciies present</u>

Total number of sample studiied

Densiity = Number fo individual speciies

Total number of sample studiied

Abundance = Number of iduals speciies

Total number of sample iin which speciies present

VI. RESULT AND DISCUSSION

In the present investigation, at about 77 deciduous forest trees species belonging to 31 different families, were identified with their botanical name and their possible uses by the local tribes were recorded in Table 1. According to (Odum 1971[8]) the distribution of species is found only in very uniform environment and regular distribution occurs, where the severe competition happened between the individual species. From the data obtained through quadrate surveyed of Loro Ghat forest trees, were recorded in Table 1. It is observed that the family Fabaceae represent maximum number i.e., seventeen species, followed by Moraceae with 7 species, Combretaceae with 06 species, Myrtaceae with 5 species Rutaceae with 4 species, Anacardiaceae Rubiaceae and Euphorbiaceae with 3 species, respectively. Besides, the families Annonaceae, Apocynaceae, Burseraceae, Embenaceae, Lamiaceae and Meliaceae were found with two species of each in the surveyed area.

The species diversity always depend upon the adaptability and stability of the plant community, hence the Loro Ghat forest trees are also showed mixed community. The date obtained during the survey indicates, nineteen other families are also showed their existence by appearing as single species of each. A total of 77 different plant species belongs to 31 different families are exhibited in the species composition, which complete to each other, prevent extinction and increase their diversity. Structural distribution analysis for each species conducted, by using the parameters such as Frequency, Density and Abundance of each case. On the basis of data analysis Butea monosperma showed their maximum frequency, density and abundance i.e., 0.507, 1.074 and 2.117 respectively, during the sampling, and then followed by Cassia fistula and Shorea robusta with 0.313 and 0.388, respectively. On the other hand, Embilica officinalis, Ficus bengalensis, F. carica, F. glomerata, Pongamia pinnata and Pterocarpus marsupium showed minimum distribution in the forest. Surprisingly, the species like Santalum album, Mangifera indica and Annonareticulate, Terminalia arjuna and Tectona grandis were appeared with high abundance.

S. No.	Name of species	Family	Local name	Uses	
1.	Acasia arabica	Fabaceae	Kikar/ abul	Timber wood, medicinal value	
2.	Acasia caesia	Fabaceae Goriar Timber wo		Timber wood, medicinal value	
3.	Acacia catechu	Fabaceae	Khair	Katha production	
4.	Adina cordifolia	Rubiaceae	Haldu	Antiseptic, Timber wood	
5.	Aegle marmelos	Rutaceae	Bel	Medicinal value, Fruit	
6.	Ailangium salvifolium	Cornaceae	Akol	Making kachha house	
7.	Albizzia lebbek	Fabaceae	Siris	Medicinal value, Timber wood	
8.	Alstonia scolaris	Apocynaceae	Chhatrak	Medicinal value	
9.	Anogeissus latifolia	Combrataceae	Dhawada	Timber and fuel wood	
10.	Annona squamosa	Annonaceae	Sheetaphal	Edible fruit, medicinal value	
11.	Annona reticulate	Annonaceae	Ramphal	Edible fruit, medicinal value	
12.	Anthocephalus cadamba	Rubiaceae	Kadamb	Medicinal value, timber wood	
13.	Azadirachta indica	Meliaceae	Neem	Medicinal value, timber wood	
14.	Bambusa arundinaceae	Gramineaceae	Bamboo	Medicinal value	
15.	Bauhinia variegata	Fabaceae	Kachnar	Medicinal value, timber wood	

7

Table 1: Botanical Name, Family, Local Name and Uses

Retrieval Number: 100.1/ijab.A1021044124 DOI:<u>10.54105/ijab.A1021.043123</u> Journal Website: <u>www.ijb.latticescipub.com</u>

Indian Journal of Advanced Botany (IJAB) ISSN: 2582-9475 (Online), Volume-3 Issue-1, April 2023

16.	Bombax ceiba	Bombaceae	Samel	Fuel wood	
17.	Boswellia serrata	Burseraceae	Salai	Fuel wood	
18.	Buchania lanzan	Anacardiaceae	Chironjee	Medicinal value, edible fruit	
19.	Butea monosperma	Fabaceae chhoela		Medicinal value	
20.	Careya arborea	Myrtaceae Kumahi F		Fuel wood	
21.	Caesalpinia bonducella	Fabaceae	Flem Fuel wood		
22.	Carthamus tinctorius	Compositae	Kusum	Fuel wood, edible fruit	
23.	Cassia fistula	Fabaceae	Amaltas	Fuel wood	
24.	Citrus medica	Rutaceae	Nimbu	Medicinal value, edible fruit	
25.	Dalbergia sisso	Fabaceae	Sisham	Timber, medicinal value	
26.	Dalbergia paniculata	Fabaceae	Dhobin	Timber, medicinal value	
27	Delonix regia	Fabaceae	Gulmohar	Medicinal value, edible fruit	
28	Diospyrus melanoxylon	Ebenaceae	Tendu	Edible fruit timber wood	
29	Diospyrus metanonyten Diospyrus ebenum	Ebenaceae	Makar tendu	Edible fruit, timber wood	
30	Embilica officinalis	Euphorbiaceae	Amla	Edible fruit, timber wood	
31	Enothea officiality	Fabaceae	Munga	Medicinal value edible fruit	
31.	Erymrma marca Fucabintus arandis	Myrtaceae	Neilgiri	Timber wood medicinal value	
32.	Eucarypius granais	Myrtaceae	Iomun	Edible Eruit medicinal value	
34	Eugenia hovnoana	Myrtaceae	Jamti	Europe Fuel wood	
25	Figure hangelongie	Moraceae	Bargad	Religious tree	
22	Ficus pengalensis	Morease	Dargau	Poligious tras	
30.	Ficus religiosa	Moreceae	ripai	Madiair -1 1	
37.	Ficus carica	Moraceae	Anjeer	Medicinal value	
38.	Ficus elastic	Moraceae	Rubber	Economic value	
39.	Ficus infectoria	Moraceae	Pakri	Fuel wood	
40.	Ficus glomerata	Moraceae	Gular	Medicinal value	
41.	Gardenia latifolia	Rubiaceae	Piprol	Medicinal value	
42.	Garur pinnata	Burseraceae	Khenkara	Fuel wood	
43.	Gmelina arborea	Lamiaceae	Khamer	Timber and fuel wood	
44.	Holarrhena hantidysenerica	Apocynaceae	Koriya	Fuel wood	
45.	Hardwikia binata	Fabaceae	Anjan	Medicinal value	
46.	Jatropha curcus	Euphorbiaceae	Rattanjote	Making biofuel	
47.	Lagestoromea lanciota	Malvaceae	Nana	Fuel wood	
48.	Laucaenea leucocephala	Fabaceae	Subabul	Medicinal value and fuel wood	
49.	Litchi chinensis	Sapindaceae	Litchi	Medicinal value, edible fruit	
50.	Litsea chinensis	Lauraceae	Maida	Fuel wood	
51.	Maduca indica	Sapotaceae	Mahua	Economic value	
52.	Mangifera indica	Anacardiaceae	Aam	Economic value, fuel wood	
53.	Morus alba	Moraceae	Mulberry	Medicinal value	
54.	Moringa oleifera	Mongiaceae	Senjhra	Medicinal value	
55.	Melia azadirachta	Meliaceae	Bachain	Medicinal value	
56.	Murraya koenigii	Rutaceae	Mithineem	Timber wood	
57.	Ougenia dalbergia	Leguminosae	Tilsa	Fuel wood	
58.	Plantanus orientalis	Plantaceae	Chinar	Fuel wood	
59.	Pongamia pinnata	Fabaceae	Karanj	Medicinal value	
60.	Prunus amygdalus	Rosaceae	Almond	Medicinal value	
61.	Psidium guyava	Myrtaceae	Guava	Fruit & fuel wood	
62.	Pterocarpus marsupium	Euphorbiaceae	Bija	Timber wood	
63.	Randia dumetorum	Rubiaceae	Menda	Fuel wood	
64.	Santalum album	Santalaceae	Chandan	Medicinal value	
65.	Saraca indica	Fabaceae	Ashoka	Medicinal value	
66.	Semecarpus anacardium	Anacardiaceae	Bhelwa	Medicinal value	
67.	Shorea robusta	Dipterocarpacea e	Sarai	Timber wood	
68	Sovmida febrifuge	Meliaceae	Rohina	Medicinal value, timber wood	
69	Symplocos racemosa	Symplocaceae	Lodh	Fodder. Timber wood	
70	Tamarindus indica	Fabaceae	Imali	Fuel wood	
71	Terminalia ariuna	Combretaceae	Kahua	Timber wood	
72	Terminalia hellerica	Combretaceae	Raihra	Medicinal value	
72.	Terminalia chebula	Combretaceae	Harra	Medicine value	
73.	Terminalia tomentosa	Combretaceae	Sai	Timber wood	
75	Terminalia alintiaa	Combretaceae	Saj	Timber wood	
76	Testong area dis	Verbenagaaa	Sagwan	Timber wood Medicinal value	
/0.	Tectona granais	Dhamasaa	Sagwan	Medicinel value	
//.	Lizypnus mauritiana	Knamnaceae	ьer	Medicinal value & fruit	

Table 2: Frequency, Density and Abundance of the Forest Tree

No	Name of Species	Number of Samples in	Fotal Number of Individual Species	Frequency	Density	Abun-
		Which SpeciesPresent	Present			Dance
01.	Acasia arabica	07	07	0.104	0.104	1.000
02.	Acacia catechu	11	12	0.164	0.197	1.090
03.	Albizzia lebbek	09	12	0.134	0.197	1.333
04.	Anogeissuslatifolia	12	16	0.179	0.238	1.333
05.	Azadirachta indica	15	18	0.223	0.268	1.200
06.	Annona reticulate	08	17	0.119	0.253	2.125

Retrieval Number: 100.1/ijab.A1021044124 DOI:10.54105/ijab.A1021.043123 Journal Website: <u>www.ijb.latticescipub.com</u>

Biodiversity of Jashpur District Chhattisgarh, India

07.	Anthocephalus cadamba	07	10	0.104	0.149	1.428
08.	Bambusa arundinaceae	08	14	0.119	0.208	1.750
09.	Bauhinia variegat	16	21	0.238	0.313	1.312
10.	Bombax ceiba	07	11	0.104	0.164	1.571
11.	Buchania lanzan	13	17	0.194	0.253	1.307
12.	Butea monosperm	34	72	0.507	1.074	2.117
13.	Cassia fistula	21	32	0.313	0.477	1.523
14.	Dalbergia sisso	18	29	0.268	0.432	1.611
15.	Delonix regia	13	15	0.194	0.223	1.153
16.	Diospyrus melanoxylon	08	13	0.119	0.194	1.625
17.	Emblica officinali	05	08	0.074	0.119	1.600
18.	Eucalyptus grandi	17	21	0.253	0.313	1.235
19.	Eugenia jombolana	18	23	0.268	0.343	1.277
20.	Ficus bengalensis	06	08	0.089	0.119	1.333
21.	Ficus religiosa	07	07	0.104	0.104	1.000
22.	Ficus carica	06	06	0.089	0.089	1.000
23.	Ficus glomerata	06	07	0.089	0.104	1.166
24.	Jatropha curcus	20	37	0.298	0.552	1.850
25.	Laucaenea leucocephala	16	22	0.238	0.328	1.375
26.	Maduca indica	18	33	0.268	0.492	1.833
27.	Mangifera indica	17	35	0.253	0.522	2.058
28.	Melia azadirechta	11	17	0.164	0.253	1.545
29.	Ougeinia oujeinensis	16	18	0.238	0.731	1.125
30.	Pongamia pinnata	06	08	0.089	0.119	1.333
31.	Pterocarpusmarsupium	06	07	0.089	0.104	1.166
32.	Santalum album	07	27	0.104	0.402	3.857
33.	Semecarpus anacardium	08	11	0.119	0.164	1.357
34.	Shorea robusta	26	46	0.388	0.686	1.769
35.	Soymida febrifuge	10	13	0.149	0.194	1.300
36.	Tamarindus indica	13	23	0.194	0.343	1.769
37.	Terminalia arjuna	21	44	0.313	0.656	2.095
38.	Terminalia bellerica	16	18	0.238	0.268	1.125
39.	Terminalia chebula	08	11	0.119	0.164	1.375
40	Terminalia tomentosa	18	34	0.268	0.507	1.888
41.	Tectona grandis	23	49	0.238	0.268	2.130
	Total	532	849			

VII. CONCLUSION

The forest is the pearl for our future generations but, due to the anthropogenic pressure, overgrazeeging, expoitation for agriculture and for human settlement, road and industrial units. On the other hand, sizeable- forest land has been diverted to agricultural land or land for building colonies and factories. The present condition of forest is very poor and many species of this region have been disappeared and many other species are endangered and rare. The local pressure including timber wood and fuel wood are cut by villagers and collection of non timber products such asfruits, gum, seeds and leaf, grazing their animals, forest fire and animal hunting make situation more worst since such extraction is not legally permitted, because quantitative estimation of the extraction is not possible. Hence, the distribution and Phytosociological studies clearly indicate that Loro Ghat forest is an extremely important ecosystem by the virtue of richness of forest wealth and diversity of tree species with mixed dominance and favourable regeneration. However, controlled quantities of fuel wood can be removed from the forest. The species those are threaten rare need more attention and care.

DECLARATION STATEMENT

Funding	No, I did not receive.		
Conflicts of Interest	No conflicts of interest to the best of our knowledge.		
Ethical Approval and Consent to Participate	No, the article does not require ethical approval and consent to participate with evidence.		
Availability of Data and Material	Not relevant.		
Authors Contributions	I am only the sole author of the article		

REFERENCE

- Amia Ekka (2011) Medicinal plants used by local inhabitants in 1. Jashpur District, Chhattisgarh, India. Proceedings of Climate change and its effect on biodiversity. Page no. - 32-36.
- Amia Ekka (2012) Some interesting alcoholic beverages among the 2. tribal communities in Chhattisgarh, India. International Journal of Pharmaceutical Research and Bio-science 1(4):353-359 (SJIF -4.278)
- Amia Ekka, Neelam Sanjeev Ekka (2013) Traditional plants used for 3. snakebite by Oraon tribe of Jashpur district, Chhattisgarh. International Journal of Advanced Research in Management and Social Sciences (ISSN: 2278-6236) Volume 2, Issue 6, June 2013 Page 1-9 (SJIF - 4.400).
- Amia Tirkey (2006) Fish Stupefying plants used by Tribals of 4. Jashpur District, C.G. Journal of Economic & Taxonomic Botany Vol. 30 No. Suppl., 163-166.
- 5. Cintron, G. and Y.S. Novelli (1984) Methods forstudying mangrove structure. In Samuel, C. snedakar, and J.G. Snedaker [eds/the mangrove ecosystem] Research methods: Unesco, 251.
- 6. Ignace kindo (2022) - medicinal and aromatic plants of botanical garden loyola college kunkuri. International Journal of Botany and Research (IJBR) ISSN (P): 2277-4815; ISSN (E): 2319-4456 Vol. 12, Issue 2, Dec 2022
- 7. Mishra, R. (1968) Ecology, work book. Oxford and IBH Publishing company, Calcutta.
- 8. Odum, E.P. (1971) Fundamentals of ecology, W.B. Saunders. Philadelphia.
- 9. Phillips,E.A. (1959)Methods of vegetation study. A Holt dry den book, Henry Holt and co. ,Inc. New York. pp 105.
- 10 Snedaker, S.C. and Snedaker, J.G. (1984) The mangrove ecosystem: Research methods. UNESCO, Paris.
- Pravin, A., & Deepa, Dr. C. (2019). Observation on Therapeutic Plant Identification based on Deep Learning Technique. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, 1471-1475). Issue 11. pp.

Retrieval Number: 100.1/ijab.A1021044124 DOI: 10.54105/ijab.A1021.043123 Journal Website: www.ijb.latticescipub.com

Published By:

Lattice Science Publication (LSP) © Copyright: All rights reserved.

https://doi.org/10.35940/ijitee.j9808.0981119

- M, N., Vidyashankara, & Kumar, G. H. (2020). Recognition of Leaves in Videos. In International Journal of Inventive Engineering and Sciences (Vol. 5, Issue 8, pp. 1–3). <u>https://doi.org/10.35940/ijies.10946.025820</u>
- Panda, A., Gupta, A. K., & Kaur, A. (2020). Sectoral and Livelihood Vulnerability to Climate Risk in Indian Himalaya: A Case Study of Almora District of Uttarakhand. In International Journal of Management and Humanities (Vol. 4, Issue 7, pp. 59–66). https://doi.org/10.35940/ijmh.g0679.034720
- Jain, K., Kabra, N., Khatri, S., & Dholay, S. (2021). Automated Snake Bite Prevention System. In International Journal of Innovative Technology and Exploring Engineering (Vol. 10, Issue 3, pp. 29–33). https://doi.org/10.35940/ijitee.c8354.0110321
- Keskar, M., & Maktedar, Dr. D. (2019). Enhancing Classifier Accuracy in Ayurvedic Medicinal Plants using WO-DNN. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1, pp. 6705–6714). Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP. https://doi.org/10.35940/ijeat.a2001.109119

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the Lattice Science Publication (LSP)/ journal and/ or the editor(s). The Lattice Science Publication (LSP)/ journal and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

